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2.

- 
the stress and strain rate tensors as well as in the temperature rate. The

• j j concept of a yield surface is not employed and the transition from the mi—

- tial thermoelastic behavior to the subsequent t~iermoinelastic behavior is

smooth.

The mechanical constitutive equation and the heat conduction are de-

veloped first. Then the properties of the proposed equations are studied

qualitatively under adiabatic and spatially homogeneous conditions. ~pprop-

- - n ate limits of the solutions of the nonlinear differential equations are

obtained for limiting loading rates (extremely fast and extremely slow) and

for large times. Next it is shown that instantaneous large changes in
I.

loading rate result in a continuous instantaneous thermoelastic response.

The equations are then reduced to special, spatially homogeneous deforma—

tions, such as hydrostatic, uniaxial, biaxial, and torsional states of
I

U stress. Numerical experiments using hypothetical but realistic material

functions and constants show the predictive capability of the model. The

case of torsional cycling is of special interest since it shows that tor-

sional cycling introduces axial displacements or stresses depending on the

- 
boundary conditions due to deformation-induced temperature changes.

ii
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where It is a non—negative quantity which we chose not to specify further.

U With this choice the second law is not violated. We note that (18) is not an

exact differential in stress and temperature, and consequently even in the

case where A equals zero and the deformation is adiabatic, Eq. (18) does not

• quarantee that the entropy depends only on the present stress and temperature.

Properties of the Proposed Coupled Therinornechanical Constitutive
- 

Equations under Adiabatic Conditions H

Equations (1), (2), (16) and a suitable law for the heat flux vector

constitute a system of nonlinear first-order differential equations which

are linear in the rates of the stress and the strain tensors and the temper—

ature. For their solution we must employ the equations of motion and we

must specify the external heat supply and the boundary conditions. If we

consider zero heat supply and spatially homogeneous conditions, the heat flux

vanishes and the equations of equilibrium are satisfied. We then must either

specify the stress or strain tensor as a function of time. The temporal

variations of the strain tensor (if the stresses are prescribed) or the stress

• tensor (if the strains are prescribed) and the temperature are then obtained

from (1), (2), (16) and suitable initial conditions.

For ~~ 0 and R 0 (16) is homogeneous of degree one in the rates and

- 

can be expressed as

~C dek2 ~kL 
- dekL 

{l+v 
~~~~~ - 

~~ 
a~~ + a9c7kk

’
~ (19)

which for a— 0 reduces to
1 d

dO aO mm (20)
pc dekL

For constant material properties (19) can be rewritten as

‘1 [1
iJ 

___ ______  ______
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a. .  + (v auin ’~~~) 
daij

— (21)

• 
dckL PC+o~

akk

From (20) we see that the model predicts initial cooling in tension, heating

in compression, and initial isothermal response in torsion prior to the on—

set of inelastic response.

Limiting Behavior for Extremely Slow and Fast Loading

We impose a constant strain rate deformation and consider the limiting

- response predicted by the model in veiy fast and very slow loading at con—

stand strain rate. Specifically we set

• 

= (22)

with e
11— e ~~~t and Q11— l , where ~ and are constants.

Substitution of (22) into the integral equation (9) gives

V 

a
~~~

Ee ,OI Gij
(€ ,eI + 

~ 
- ~~~~}{e~~ - 

~ J k(]~ ~~~~~~ 
(23)

J 

We examine the response under infinitely fast (~~-‘o
) and infinitely

slow (~~
- 0) constant strain rate deformation by performing these limits

• using (23) .

We obtain
list a G (e , 9I (24 )
~-*0 

ii ii~ ’~

1] 
~~~~~~~~~~ 

au I ~~ d~~. (25)

U Using (4), Eq. (25) simplifies to

• 

• 
11

~ i•
]

____________________________________________________________ — 
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L.  list a — $ E(9] —~
-
~~~ 

Q~~ d~ 
(26)

~~~~ ij d€ uui

• 
• •  

and to

list a — E $ (27)

1. ~~~~~ ii ii

- 
provided E is constant.

I Substitution of any of (24) through (27 ) into (21) results in the

• appropriate representation of the heat equation corresponding to these

limiting cases. From (24) we identify the function G as the equilibrium

stress-strain curves of the material, as in the case of the isothermal

theory (11. We see that (4) does not guarantee a linear thermosnechanical

response for very fast deformation unless E is independent of temperature.

The limitincj behavior obtained in (24) represents a lower bound to the

- mechanical response which the theory predicts at any finite strain rate,

while the limits (25) — (27) represent an upper bound to this response. The

same limits can be obtained for infinitely slow and infinitely fast constant

stress rate loading. These limits indicate that as we deform the material

at high rates the response tends more toward elastic behavior, while

deforming the material at low rates results in a response closer to the

equilibrium response manifested in G.-
~

Limiting Behavior at Large Times

We examine the behavior predicted by this theory at large times with

• constant stress rate or strain rate deformation. Through these considerations

4 we obtain limiting bounds upon the response which the theory predicts, and

I U while these limits stay appear to imply large deformations, they are actually

rapidly attained asymptotic limits. Previous investigations ( 1— 3] and

• ~~—~.•- ••— -~-• - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~ ~~~~~~~~~~~



r 11.

present numerical experiments indicate that these limits are attained by the

response well within the strain magnitudes appropriate for infinitesimal

• deformation theory.

We define the difference between the stress and the equilibrium re-

sponse G to be the overstress, and we determine the limit of the overstress

- • 
as time goes to infinity in constant strain rate deformation . We use the

• •  integral equation to perform this limit and using (4) we obtain, following (1,31

Cai~ 
G

~~~}
kh 1’, 01(~~~

91 ::~ 
— 

~kL (28)

where the braces denote the time limit of the overstress

(a• .— G  .3 s list (a — G  •)  . (29)
• 1, ~~ ~~~~ ~i

• 
- This limit is rapidly attained before the self-heating temperature

increase is sufficient to influence the mechanical response noticeably.

Following a similar procedure we differentiate (9) in time obtaining

the limit for the slopes
• do dcl (c,9]
I list — list A (30)

~~~~ 
d€~~ ~~~ d€ kL

We similarly consider the limiting overstress in constant stress rate

• 

• 
deformation. We use the chain rule to replace the strain rate term in the

integrand of the integral equation by writing

L 
~kL — d: & • (31)

• We proceed by taking the limit of the overstress, and we then substitute the

“slope limit” (30) into this limiting overetress, noting that

-
~~ 

6
~k L —1list ~~~~~ — A~ ~~ • (32)

t-•~ mu

F
hi_ 1 ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ • •~~~~~~~~~ •~~
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I L  . .Using (32) we obtain the limiting overstress in constant stress rate

deformation

to~1
_ G ~~) — k ( r ,eJ (EE e dskL 

— 

d€kL
) Akhfln%n 

(33)

- • In the particular case of our representation of the function G proposed in (311

we denote
- E (91 a list g[,~

0] 
• (34)s

Then we have, using (34)

A — E ( 8] (35)ijkL 5 dekL

~
• 

and we obtain for (33)

•~ [aj~
_ G

~~3” .k(r ,e](E 0] _ E
510) ) &~~/E5(e1 . (36 )

Because the function k( I depends upon the special invariant defined

in (3), Eqs. (28), (33), and (36) representing the limiting overstress are

transcendental equations, indicating that the limiting overstress is finite
- . 

and depends nonlinearly upon the constant strain rate or constant stress

rate tensors. This property enables the modelling of arbitrarily close

spacing of stress—strain curves obtained at widely different stress rates or

strain rates, as shown in Fig.1*. If the function k would be independent of r

• U and e the limiting overstress would depend linearly on the applied stress

rates or strain rates (1,3].

U 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Behavior in the Neighborhood of the Stress and Strain

• Origin and of the Initial Temperature

The right—hand side of Eq. (1) is initially zero in an undeformed ma—
• 

fl 
terial, and we consequently obtain using (4) with constant material properties

(37)dSKL dckL

(~ r~ * Numerical simulations use the data given in Table 2. 

~~~-- • - - • ~~~~~ ••-
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U 
With this result and (20)

dO 
______________

d 2 
8
kL~~ 

(38)
kL (l— 2V )pC—3~~ B

- ‘
• This prediction differs from classical thermoelasticity by the term of

2order (E~ 9/pc); however such a term is much smaller than one (typically less

than l0~~) and its effect upon the prediction is negligible.

(
29\consequently, we will henceforth neglect the term pC •~ 

in our inter—

pretation of the heat equation and we regard the heat equation (38) as equiva—

lent to the classical thermoelastic heat equation.

• Instantaneous Large changes in Strain Rate or Stress Rate

Suppose that at any point ; €, B the strain rate is instantaneously

— I -, changed from ~~~.. to ~~~~~~. where ~ denotes the value of the strain—rate tensor
i1 ii

• - prior to the jump change in strain rate and denotes the value of the

strain—rate tensor following the radial jump in strain rate. We are inter-

do. dat. - +
ested in the change in the slopes —-

~~ to and to at the instant• dckL dekL “6kL dckL
the strain rate is changed. Frost (1) and the chain rule we obtain using (4)

and assuming constant material properties*

Li

Ii (E ~-~-I - ____ — (E ::~ - 
____ . (39)

I To represent the radial jump in strain rate we write €+ = a€  whereii lj

• “ a” is a constant, and obtain

E3
* Although it is lengthy to demonstrate mathematically the approximations
also hold when the material properties are functions.
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L. da~1 ~ ____ + — 
~ d$~~1~~ 

(40)a dckL \d€ kL a d€ ktJ

Proceeding similarly, from (21) we obtain

dO4 
1 d9 

— 
1 1(

da.. 
— 

1 da
1~ ( l÷V  a —

• 

- - 
d€~jc~ 

a dekL pC+aa~~ l\d €kL a d€ kL.\ E ij

~~~~~ 
akk

_ cr9)) — ak L(1 — . (41)

If lal >> 1 (typical changes in strain rate are 10
2 s

_i 
and higher) we

have approximately
da~ 

___ (42)
• d€kL

L and

_ _  
aBE (43)d€ k L pC (l — 2v) — 3a28E £

comparing (42 ) with (37) and (43) with (38 ) , respectively, we see that

large radial positive or negative jumps in strain rate result in a thermo—

elastic slope of the stress—strain and the temperature-strain diagram, see

• Figs.l and 2 .

- To consider radial jt~ p changes in stress rate we invert the constitu-

tive equation (1) with (2) and using (4) in the case of constant material

properties we obtain

- • 

U - I ((l+v) (ajj
_G
jj
)_v(a

~~
_
~~~~

)5
ij) +~~ ~~~~~ -

• I] ~~~k
6j l)+ c r è6jj .  (44)

[] We set — b&~ , where “b” is a constant and obtain

1’

t~ ~~~~

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~ 
;-

~~~~~~~~~~ ~~ ~~~~~~~~ •~~-~~~~~ • - -
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I-I

:~ 
+ a 6mn(

_
~~~~

:• + D stnI~L(
1_

~~ ) (45 )

where
— ~j ! (~ ~

6rk 6sL~~
6rL6sk~ 

— l + V  . (46 )

Equation (16 ) yields

:: (p C + a ~~ ) (de ! d O T h a c  (
de~~~ ~~ 4( 1  

~
)

kk \dakL b da
kL

/ ij \dckL b \ b.

((~ 
a —crO ) 6kL 

— a3~~) . (47)

Then for ~bI >> 1
• 

de~~ 0~~
dakL 

= D
kL

+a6 
do~~~ 

. 

(48)

and

d9~~ cr9
• = — —— 6 (49)pC k2

The results in (48 ) and (49) are analogous to (42) and (43) , respectively.

From this analysis we see that large changes Ibi >> 1 in the stress

Li rate produce linear therinoelastic response. We note that this important

property holds irrespective of the values of a, c and B.

Reduction of the constitutive Equations to Special

U 
Deformations under Adiabatic conditions

D
In examining the predictions of this conatitutive theory in special

deformations we assume for simplicity and convenience that all material

[] properties are constant unless otherwise specified. The predictions in the

case of nonconstant material parameters follows directly from the theory

[] but is cumbersome in its representation.

~i 
11

• - - -~ ~~ .~ 
• • •• • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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Li

Pure Hydrostatic Deformation

In this case we have a
j1
.a8

i~ 
and ~~~~~~~~~ Depending on the choice

- 

of the invariant cp in 3 different behaviors can be modelled . If a devia-
L.

toxic p from Table 1. is chosen then from (1) for constant material

• 1. properties

— E$~ 1 
(50)

and from (21)

dO aBE
a —  & , (51)ds,~t (l - 2V) pC - 3Ea ~ 

K

and we see that the behavior is linear thermoelastic. If we chose a non-

- 
deviatoric invariant then nonlinear, rate-dependent behavior will be obtained.

No information regard ing actual material behavior under nonisothermal

I hydrostatic conditions is available and in keeping with tradition we choose

a deviatoric invariant for metals. For other materials a nondeviatoric p

• f appears to be suitable.

E] Uniaxial Deformation

In this case $11a x ( t ) — e — c v ( 9 — 90) and all other $~~ aO ;  a
11— a(t)

Ej 
and all other ai1 

a o~ Ecluations (1) , (2) , (6) and (16 ) reduce to

E — & . ’  (~ — g(x,6]) k[a~~g, 9) (52)

and da f r  e11 d!. 
a -~~.;~~1+a

U di

[J or alternatively we write (53) as

U (pc — Ecr
2
$)Ô — (a + EcrO) (a — glx , 91) 

~~~ 
— 3 (54)

- 
or

- •
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L

1 pcê = 
(a— g(x , 91 )a 

— cr9& . (55)

The uniaxial stress response and temperature response under constant strain

rate are shown in Figs. 3 and 4 (see Table 2 for data).

Torsion of a Thin-Walled Tube

•
1 In pure torsion of a tube one usually specifies the shear stresses or

• shear strains and in this case we have 
~l2 = 

~~21 ~~ 
and a

12 — °21 
=

Inelastic torsional deformation results in a temperature increase (10—12, 24-281,

and this temperature change induces an axial “ thermal strain” . Consequently,

in torsion we must also examine the axial component of the constitutive

I ecuation (1) under specified boundary conditions. From (1) — (4) and (16)

we have Li

E • 1 
—(1 +V)  k[~ , ~~~~ 

(T 012) (56 )

— k(r,el ( a —G
11

)
and

1 cT-G
- • ( pC — Ea2 9)O 2( l +~’) r ( T — G 12) — E a Oe + (a+Ecr8) . (58)

In the above (5) reduces to

• 1 Gl1 
( ( 8 8 )  g(cp,BJ ( 59)

p and

Li 0 — ~~~~~~ 
g(~~ 8] (60)

12 1+v p

[I We have two choices for the axial boundary conditions*: zero stress or

zero strain. If we require zero axial stress then ~ and & vanish for all time

*

U Specification of nonzero axial stress or strain requires prior axial loading
which we do not consider here.

1 ii
-

~

- - •—-

~

—-- “••-
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L
• and this requires = a and G11 a 0. consequently under this boundary condi—

tion the axial deformation has the simple solution

(61)

• Equation (57) is then trivially satisfied and Eq. (58) reduces to the torsional

• .~. heat equation and contains only shear contributions

• (l+V)
• pc8 = r(T—G ) . (62)

Thus, when assuming this boundary condition the theory predicts a uniform

elongation equal to

- . tf we alternatively assume the zero strain boundary condition (e = 0,

~~= 0)  (57 ) reduces to

• ~~~ • ~ + )~[ )  a_c<E9 + ~~~~~~~~~~ 

~~~~~~~~~ (63)

while in (58) the c—term vanishes. Equation (58) predicts a temperature in—

crease due to the inelastic torsional deformation represented by (56). This

U temperature increase results in an axial compressive stress build—up according

to (63) and this axial deformation can further contribute to the self—heating

L of the material as is clear by comparing (58) with (62).

1• In the first case the axial unit elongation is proportional to the

temperature change (see (61)1, which is generated through the torsional de—

F formation through (62). However, in the second case there is zero axial unit

- 

- 
elongation but there is a rate—dependent, inelastic, and gradual compressive

- - [1 stress build—up predicted by (63) .

Figures 1, 2 , 3 and 4 show th e  stress—strain and temperature—strain

response under pure torsional deformation of a thin-wailed tube with boundary

- - U conditions of zero axial stress (Eqs. (56 ) , (61) and (62) apply) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~_~~~~ __ _.f~~~~ -.-• • —•- • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



Strain-controlled Torsional Cycling

It is a fundamental assertion of our theory that viscoplastic behavior

can be represented by discontinuously accounting for the deformation—induced

• microstructure change of the material (38, 39] . In our theory this accounting

is accomplished at physically defined points. The values of stress, strain,

- and temperature at these points are stored in material functions and simul—

taneously appropriate constant material parameters are updated. Storage with—

• T out updating occurs in a cyclic steady state condition. Without this storage

and updating our equations are of a nonlinear thennoviscoelastic nature.

• Through this procedure we represent thermoviscoplasticity with piecewise

nonlinear thermoviscoelasticity.

• I Although storing and updating is discontinuots the response predicted

by our theory remains continuous. We specify that storing and updating occur

when any component of the overstress vanishes and subsequently changes sign.

I The rules for updating must be obtained from cyclic deformation experiments.

Presently the rules for storing and updating are only developed for cyclic

-~ proportional loading .

• To illustrate the procedure we simulate in Fig.5 cyclic hardening in

completely reversed strain controlled torsional cycling of an axially con—

strained thin—walled tube ( c — 0 ) .

Equations (56 ) , (58) (with € — 0) and (63) apply and the equilibrium

Ii functions are given by (59) and (60) . At the first occurrence of vanishing

U torsional overstress the values of the equilibrium functions, strain, and

- 
- 

temperature are stored . Simultaneously the physically defined parameter Xf

U used in the representation of g (see (31] ) is updated* to simulate hardening*~~.

Additional possibilities exist through the updating of k(  1.
** If necessary more than one parameter can be changed (see [40)) .

_________________ •
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At the point of vanishing torsional overstress we denote the axial equilibrium

i i  function value, the shear equilibrium function value, the shear strain and

• J the temperature as ~~~~ ~~~~ y 
(1) arid 9~~~. Departing the point of van-

ishing torsional overstress we have

1 (1) (1) (1)
G 

_ _ _ _ _  

g ~~ ‘~~~~~ +G W (64)
12 l+v ~~

(l) 12

and

- -  
G11=— a (9—e~~ ) 

g~~~~~ 1)
,8] + G ~~~ (65)

where p~~ is determined using y — y and B — e (1)
; g 

(1) represents the

updated stress—strain curve.

At the subsequent occurrences of vanishing torsional overstress the

storage-updating procedure is repeated.

The cyclic deformation shown in Fig.5 results in the temperature in—

F crease depicted in Fig.6 which in turn leads to the compressive stress

build—up in Fig.7.

• L. DISCUSSION AND NUMERICAL EXPERIMENTS

[] The preceding constitutive theory represented by (1), (2), (16) with

(3) reproduces in a unified way many of the qualitative features of non—

[j isothermal, inelastic metal deformation generally attributed to thermovisco—
- 

plastic behavior. The capabilities of the theory include:

• .1 • Initial thermoelastic response at all loading rates prior to
the onset of inelastic behavior.

• Subsequent deformation—induced temperature increase during the
nonlinear (inelastic) mechanical response.

• Linear thermoelastic behavior at all values of stress and

strain in the pure hydrostatic deformation field .
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• Stress rate, strain rate and temperature rate sensitivity

of the mechanical response.

- • Creep and relaxation are treated in a unified way.

S Stress rate and strain rate sensitivity of the thermal response.

• Initial thermoelastic “slope” of both mechanical response and

thermal response innnediately upon the imposition of large

r instantaneous increases in the strain rate or stress rate.

• Defined mechanical and thermal behavior under limitingly slow
- .  and limitingly fast rates of deformation.

• Nonlinear dependence of steady—state mechanical response upon

F the applied constant stress rate or constant strain rate
• - tensors (nonlinear spacing between stress—strain curves).

11 5 Absence of strain rate history effect on stress; presence of

Li strain rate history effect on temperature.

• Stress-strain curves obtained at different constant strain rates

Li will ultimately have the same “slope”.

• Temperature dependent “ softening” of both initial elastic and
L subsequent inelastic response. 

•

• • Significant net increase of temperature under adiabatic
- cycling in torsion.
- S Cycling hardening. Permanent set upon unloading to zero stress.

• In loading from and unloading to zero stress, energy of mechanical
working is completely converted to temperature change.

• Temperature induced coupling of torsional and axial deformation

U as a possible source for the Ronay effect. Torsional cycling

is demonstrated to result in temperature increase which iso—

U tropically induces either an axial strain field or an axial

stress field.

U
[1

I • - ----- •-- . 
____  
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• In the above the terms “ slope” and stress—strain refer to particular

components of tensors specialized to one-dimensional homogeneous deformations

such as the tensile or torsional tests.

The above capabilities are substantiated by the theory and are illus— • 
-

trated by numerical simulations. In the numerical examples we select material

• 
functions and integrate the resulting coupled nonlinear stiff differential

• .. equations using a computer program based on an algorithm developed in (41].

The material functions do not represent a specific real material. They

are listed in Table 2 and are chosen to approximate the behavior of a low

strength steel. Unless otherwise mentioned these functions are used in the

- 

computation of the responses shown in the following figures.

In Figure 1 we simulate pure torsion at constant shear strain rates.

The capability of nonlinear spacing in the model is clear, since increasing

L the strain rate two and four orders of magnitude in this simulation produces

V a small increase of steady—state flow stress. This behavior is predicted under

the limits (28) and (33). Further, all stress—strain curves become parallel

to each other and to the equilibrium function G12, as predicted by the

• limits (30) and (35). At 1% shear strain an instantaneous jump in shear

strain rate is imposed. The stress response immediately departs the point

of the jump in rate with a thermoelastic slope, as predicted by Eqs. (42 ) , (43 ) .

We also see in Figure 1 and from the theory that there is no strain rate

LI history effect on stress since the response corresponding to the jump increase

• U 
rapidly merges from below with the response corresponding to uniform applica-

tion of the high strain rate.

In Figure 2 we have the temperature history corresponding to the shear

deformations of Figure 1. We see in Figure 1 that deformation at increasing

constant strain rates increases the region of apparent initial linear
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mechanical response. During the initial linear mechanical response the

ci thermal response predicted by (16) or (21) is thermoelastic and consequently

Figure 2 shows isothermal response. Subsequently the inelastic torsional

- . response results in self—heating, and deformation at increasing strain rates

• -. results in increased heating. In Figure 2 we see the temperature history

• ‘ corresponding to the jump in strain rate. While the stress response has no

strain rate history effect, the thermal response has a clear strain rate

* history effect. This strain rate history effect on temperature response

allows distinction between the continuous and jump histories.

Figure 3 indicates the predictions of this constitutive theory in

I 
- - tension, compression, torsion, and proportional loading. In Figure 4 we

• have the corresponding temperature responses pred icted by (16). While the

• L temperature and temperature rate are higher in compression than in tension

(Fig.4) the mechanical response in this case is negligibly affected and the

• 
two stress responses coincide on the graph in Figure 3. We see that the

initial response is thermoelastic but when the mechanical behavior becomes

• inelastic, self—heating rapidly occurs. In the case of proportional loading

- 
the mechanical response is decreased while the inelastic thermal response is

increased relative to the pure shear and pure tensile response.

f~• ~ [ In Figure 5 we simulate torsional cycling of a hypothetical hardening

material using shear strain control; also shown is the torsional equilibrium

L function. When the torsional overstress vanishes we execute the updating

• • t procedure described previously. To simulate hardening the parameter Xf

continues to change, see Table 2. In a cyclic steady state (closed loop) the

[j value of Xf is unchanged although storage continues. 
We note that the response

remains smooth even at the update points. If cycling would be stopped at

zero stress, an aftereffect would occur. The strain magnitude would decrease

~$



- until reaching a nontrivial equilibrium value determined by the intersec—

tion of the corresponding equilibrium curve with the strain axis. A perm-

anent set is predicted by our model.

In Figure 6 we see the adiabatic temperature response corresponding

• to the torsional cycling in Figure 5. We note the presence of both heating

- - 
and isothermal phases during each torsional cycle similar to the experimental

curves reported in [10—12, 24,25).

This temperature response gives rise to a comprehensive stress build—

• up since the axial elongation was required to be zero. This axial stress

build—up is shown in Figure 7. While the magnitude of the axial stress is

well within the linear region of Figure 3, the behavior depictad in

Figure 7 is inelastic. In the case of zero axial stress an a,:ial elongation

occurs according to Eq. (61). This thermally—induced behavior could be an

L explanation of the Ronay Effect [35—37].

L tn Figure 8 we have pure tensile response at one constant tensile

strain rate (l0~~ ~~1) but at different initial temperatures. The effect

L of “softening” the material arises through decrease of the elastic

modulus E(91 with increasing temperature depicted in the insert.. In

Figure 9 we have the corresponding temperature response. Increasing

U initial temperature results in increasing intervals of elastic cooling

prior to inelastic temperature increase as predicted by (16), (53) or (54).

Examination of Figures 1 - 4 and 8, 9 shows that the temperature

V. increase due to self—heating is usually small and of negligible influence

on mechanical behavior. However, extensive adiabatic cycling may increase

the temperature considerably with significant influence on mechanical

behavior.
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25.

The equations proposed herein are linear in the temperature rate. In

case of external heating the rate of heating will have an influence on the

mechanical deformation. Such influences of temperature rate on mechanical

deformation are reported in (42] for the case of external heating and

mechanical deformation of a uniaxial bar. Equation (52 ) shows that both

-. the rate of straining and the temperature rate have an effect on the stress.

It predicts an increase in stress with increasing temperature rate as ob—

7 served in (42]. In this case the heat source term R must be added to

Eq. (53).
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TABLE 1

• V 
REPRESE~ftATION OF PHI

Invariant Subscript cp

* 1/2
(1.5 e. e .)

1 
Lj i3

(l+v)

2 
~~ 1/2

1/4
3 (1.5 eij

e
i~
$kL$kL

)

4 r ~~~~~~ 
]

l/2

~ (l +2V )

5 r 1.5 ~~~~~~~~~~~~~~~~~ w�o
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TABLE 2

I~~TERIAL FUW~TIO!~ AND P~~PERTIES USED IN THE NUMERICAL EXPERIMENTS

1. General Parameters

c~~— l 4 .4X1 0 6 ° iC~ E — l 2 O GPa

p C 2 .O NPa/°X v .3

2. The g(  I Function, see (31]
(E—E)

g[~ ,9 J E 5CP + 2R (tanh(RX
f
_ 3))bo~e(c::h (V))

where
U — R(X~~+cp) — 

X
f 

= .003*

V — R(X -cp) - 3

E — 2 .5 GPa
tanh(3) ~ .995

R R
mi~ 

— 3.6/X
f 

from Table 1

r
In torsional cycling, Figures 5 - 7, the parameter Xf is updated at

successive occurrences of vanishing overstress. Successive values of

1 -~ X
f 
are: .0030, .0060, .0065, .0069, .00725

, .00745, .00760, .00765.

3. The function k(fl is obtained from (2] as

k — B • EXP(2l . 275 • EXP (—r/A )

A — 58.2818 i~~a

U B .2296 X 10 3
s

• 1 }  
* In cycling this paremeter value is increased in the update—storage
procedure. 
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- i FIGURE CAPTIONS

• Figure 1 Shear Response under Constant Shear Strain Rates.

~ 
1 The equilibrium stress—strain curve G12 and the elastic

response are also shown together with a response to an
• • instantaneous change in strain rate. The merging of

curves 4 and 5,6 indicates absence of strain rate history
• 4 .  effect on stress.

- • Figure 2 Adiabatic Temperature Response for the Constant Strain• L Rate Tests 2— 6 in Fig.l. Curves 4 and 5,6 never merge
• indicating presence of strain rate history effect on

• - , -. temperature.

• Figure 3 Stress—Strain Response (Absolute Values) for Tension,
Compressi9n, Shear, and Combined Proportional Loading
with~~~ — y .

Figure 4 Adiabatic Temperature Change in °K vs • Absolute Strain
- for the Tests Depicted in Fig. 3.

Figure 5 Torsional Strain Cycling of a Thin—Walled Tube Under
• Axial Constraint (s~~0) at y~~.Ol2 sin 21Tt. Cyclic

• hardening is simulated and corresponding equilibr ium

• curves G12 are shown.

• j Figure 6 Adiabatic Temperature Change Corresponding to Torsional
Cycling Shown in Fig.5.

1 Figure 7 Compressive Axial Stress Increase in the Thin—Walled
Tube due to Torsional Cycling. The equilibrium curve G11
is also shown.

~ I 
Figure 8 The Influence of Initial Temperature and Temperature

Dependent Elastic Modulus on the Stress—Strain Diagram
- in Tension. e — i~~

-
~~ ~~~~ The temperature dependence

• 11 of the elastic modulus is shown in the insert.

- Figure 9 The Temperature Change Corresponding to the Deformations
Shown in Fig.8.
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absolute temperature. Throughout this theory total strain is used and the 
-

strain tensor is not decomposed intb a sum of elastic and inelastic contribu—
tions. The concept of the yield surface is not employed and the transition
f rom initially linear thermoelastic behavior to nonlinear inelastic behavior
is continuous.

Through q~~14tative discussion and quantitative examples, this proposed
system of constitiit4ve equations is shown to represent: initial linear thermo-
elastic behavior fol\owed by inelastic rate sensitive work-hardening; linear -

thermoelastic behaviok between stress, strain, and temperature in pure hydro-
static loading; initial\cooling in uniaxial tension, initial heating in uni—
axial compression, and i’~itial isothermal behavior in torsion prior to inelasti - .
deformation; subsequent s~1f—h eating in any monotonic loading following the on-
set of inelastic behavior ;\axial stress (strain) build—up due to temperature
change uniformly induced by ~tonotonic and cyclic torsional ‘loading. Also rep-
resented are stress (strain) \~ate sensitivity; temperature rate sensitivity;
creep and relaxation; and non~inear dependence of the spacing between stress— •
strain curves at different strkss (strain) rates upon the value of the stress
(strain) rate tensor in constan~—rate loading. Stress—strain curves correspond -

ing to different constant strain\(stress) rate loadings ultimately attain the -

same slope. Defined and physical~Ly meaningful limits are obtained in the cases
of very slow and very fast loading\rates in monotonic radial loading. Associ-
ated with limitingly slow loading i~ an equilibr ium stress-strain curve, and in
relaxation the stress relaxes to an ~ quilibrium value associated with this
curve.

P Illustrative specializations - to c~ses of uniaxial, torsional, pure hydro—
static, and radial deformation historie’~ are considered and numerical results -

are obtained by postulating specific ch~ó~ces of material functions, and by
numerically integrating the resulting syè~tem of first—order nonautonomous, non-
linear stiff differential equations. Res~lts are presented in terms of graphs j
to show the inf luence of various test hist~ ries and material parameters as well
as the capability of the model. - .

In cyclic deformation the proposed equ~tions of the model are modified
according to previously established concepts\ to account for history dependence
in the sense of plasticity. This is accompli~hed by updating a material param— -

eter associated with the equilibrium stress—skrain curves in such a manner that
the material response predicted by the model r~mains continuous and ~ nooth.
The ability to represent hardening in material~ is illustrated. In torsional -

cycling a significant net increase in temperatu~e can be induced. A possible
therinoinelastic explanation for the Ronay effec~ is given.
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